Nitrous Oxide Emissions and Carbon Sequestration in Turfgrass: Effects of Irrigation and Nitrogen Fertilization

Dale Bremer, Ross Braun, and Jack Fry Kansas State University

Start Date: 2012 Project Duration: 3 years Total Funding: \$75,000

Turfgrass and Environmental Research Online /olume 14, Number 1 | January—February 2015

Objectives:

- 1. The main goals include evaluating the effects of irrigation on N₂O emissions and CO₂ fluxes over two years.
- 2. Cumulative N₂O emissions among treatments will be estimated over the entire study to determine how much emissions can be reduced under various irrigation levels.
- 3. The effects of irrigation on turfgrass quality and survivability will also be evaluated. Fluxes of CO₂ will be investigated with emphasis given to rates of photosynthesis (CO₂ intake) compared with respiration (CO₂ emissions) to determine the irrigation level(s) with the greatest likelihood of sequestering more carbon.

Nitrous oxide (N₂O) and carbon dioxide (CO₂) are important greenhouse gases that have been implicated in global climate change. Nitrous oxice is also the most important ozone-depleting substance in the atmosphere. Turfgrass is typically fertilized with nitrogen (N) and irrigated, which may result in significant N₂O emissions. Turfgrass also has the capacity to sequester or emit CO₂ from/into the atmosphere via photosynthesis and respiration. Because turfgrass covers ~50 million acres in the USA, turfgrass may have significant impacts on global atmospheric N₂O and CO₂ inventories.

The development of management practices that reduce N₂O emissions from turfgrass and enhance carbon sequestration in turf soils may help mitigate climate change and atmospheric ozone destruction. The use of slow-release N fertilizer may mitigate N₂O emissions from turf by reducing ammonium and nitrate levels in the soil immediately after fertilization. Deficit irrigation may mitigate N₂O emissions by reducing denitrification in turfgrass soils, although deficit irrigation may also reduce carbon (C) sequestration by its impact on CO₂ fluxes (e.g., reducing photosynthesis and increasing respiration).

The primary goals of this study are to quantify the magnitude and patterns of N_2O emissions in turfgrass and determine how irrigation and N fertilization may be managed to reduce N_2O emissions and enhance carbon sequestration. Carbon sequestration and N_2O fluxes will be measured in 'Meyer' zoysiagrass (Z. japonica) managed under deficit irrigation and fertilized with urea or slow-release N. Zoysiagrass is a warm-season turfgrass species that provides an excellent golfing surface that is

Figure 1. Plots of Meyer zoysiagrass protected from rainfall by an automated rainout shelter. The white rings (one per plot) are PVC collars driven into the ground, on which static chambers are mounted when collecting N_2O flux measurements.

commonly used for tees, fairways, and roughs in the transition zone. Fewer inputs are required in zoysiagrass, which may minimize its impacts on the environment compared to other turfgrasses.

The study is being conducted under an automated rainout shelter near Manhattan, Kansas (Figure 1). By shielding rainfall from turfgrass, researchers can control the amount of water applied to plots. Zoysiagrass was

©2015 by United States Golf Association. All rights reserved. Please see <u>Policies for the Reuse of USGA Green Section</u> <u>Publications</u>.

Figure 2: The first measurements of N_2O emissions were obtained October 6, 2014. In the foreground, static chambers are mounted on the collars during N_2O flux measurements.

sodded June 4, 2013. During summer (June-Aug) 2014, two irrigation treatments were applied, including medium (80% evapotranspiration [ET] replacement) and medium-low (60% ET replacement). Three N-fertilization treatments included urea and polymer-coated N, both at 2 lb/1000 ft², and a control with no N applied. Because little drought stress was observed in the 60% ET treatment, irrigation amounts in that treatment may be reduced.

Measurements of N_2O emissions began October 6, 2014 and will continue weekly-tomonthly over 2 years with static chambers placed over the turfgrass surface and using gas chromatography (Figure 2). Carbon sequestration in the upper soil profile (0 to 12 inches) will be measured by sampling soil C at the beginning and end of the 3-year study; initial soil C was measured on Aug. 28, 2013. Ancillary measurements include soil moisture, temperature, nitrate and ammonium, visual quality, and percent green cover.

Summary Points:

- Carbon sequestration and N₂O emissions will be measured weekly to monthly for 2 years from plots receiving two irrigation and three N fertilization treatments.
- Initial measurements of soil C were obtained (0 to 12 inch profile) August 28, 2013.
- Initial N₂O flux measurements were obtained October 6, 2014.
- Results are expected to provide golf course superintendents with information on specific irrigation levels and N types that could reduce N₂O emissions and enhance carbon sequestration in zoysiagrass fairways and roughs.

